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Applications

- Synthetic Data for Benchmarking

- Null Model to compare Results to

- Isolate existence of structure from
specific structure for Ablation Studies

method Dataset [5] | PROTEINS  NCI109

triangles
max CWN (Rings) | 73.84+4.3 84.5+1.6
CWN (RND) 74.2+5.0 82.24+1.3

similarity
random CWN (None) 73.0£5.5 82.9+1.2

cell_candidates PPGNs [6] | 77.2+£4.7 822+14

200
iterations
For Methods using CCs, such as
The Approach from [2] significantly CWNs [4], we can investigate the

outperforms random cells on NYC contribution of the specific cells
Taxi Trips [3]. by substituting with random cells.

Sampling 2-cells (Simple Cycles)
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(ER with n=20, p=0.3)

The number of simple cycles in a groph is
- too large to enumerate all cycles, and
- difficult to compute, with high variance
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Strengths

rel. error
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Approximation Accuracy (ER with n=30, p=0.5). Through orders of Time to sample 10n 2-cells, with s=1000 sampled trees.

magnitude (left), there is a small relative error. For larger graphs, The performance is expectedly good.
the error increases further.
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Efficient Approximation
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An Approximation of the Lapl. RW makes it possible to
efficiently approximate p. using the spanning tree
structure.

The Approximation assumes the Graph to be sampled
from the Erd6s—Rényi Model.

Weaknesses

rel. error
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The Accuracy drops for sparse Graphs (ER with n=30, p=0.1) as the Graph behaves less uniformly.
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Homophilic SBM (n=50, p=0.5, q=0.2) Heterophilic SBM (n=50, p=0.2, q=0.5) Barabasi-Albert (n=30, m=7)
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10° Number of induced cycles by length (ER with n=50, p=0.5; s=1000; 50 runs). Cycles that
are too long are exceedingly unlikely to be induced. Thus, 2-cells with long boundaries are
impossible to sample efficiently.

Background: Cell Complexes Secondary Use Case: Counting Cycles

O-cells (nodes)
/ 1-cells (edges)
v\ 2-cells (polygons)

Cells have an arbitrary but fixed orientation. N AT

Boundary Maps (Matrices) NABENIZE I—I\
Boundaries respect relative orientation. y :> 7>
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all cycles with 1=3 Final estimation:
ZEENE average over
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approximation error cancels out for our approach and can be corrected using a small number of exactly calculated probabilities
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@ T l O Counting the number of cycles on the graph is important for our approach and interesting in its own right. The systematic

D )
otherwise.
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